skip to main content


Search for: All records

Creators/Authors contains: "Liao, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Identifying multiply imaged quasars is challenging owing to their low density in the sky and the limited angular resolution of wide-field surveys. We show that multiply imaged quasars can be identified using unresolved light curves, without assuming a light-curve template or any prior information. After describing our method, we show, using simulations, that it can attain high precision and recall when we consider high-quality data with negligible noise well below the variability of the light curves. As the noise level increases to that of the Zwicky Transient Facility telescope, we find that precision can remain close to 100% while recall drops to ∼60%. We also consider some examples from Time Delay Challenge 1 and demonstrate that the time delays can be accurately recovered from the joint light-curve data in realistic observational scenarios. We further demonstrate our method by applying it to publicly available COSMOGRAIL data of the observed lensed quasar SDSS J1226−0006. We identify the system as a lensed quasar based on the unresolved light curve and estimate a time delay in good agreement with the one measured by COSMOGRAIL using the individual image light curves. The technique shows great potential to identify lensed quasars in wide-field imaging surveys, especially the soon-to-be-commissioned Vera Rubin Observatory. 
    more » « less
  2. null (Ed.)
    ABSTRACT Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant (H0) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: The lensed host galaxy can be observed before or after the transient’s appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock data sets of 48 quasar lensing systems (i.e. adding AGN in the galaxy centre) and 48 galaxy–galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and H0. We find that the precision of the lens models (in terms of the deflector mass slope) is better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of H0 precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which, in turn plays a key role in breaking the mass-sheet degeneracy and constraining H0. 
    more » « less